Detection of lameness and determination of the affected forelimb in horses by use of continuous wavelet transformation and neural network classification of kinematic data.
نویسندگان
چکیده
OBJECTIVE To investigate continuous wavelet transformation and neural network classification of gait data for detecting forelimb lameness in horses. ANIMALS 12 adult horses with mild forelimb lameness. PROCEDURE Position of the head and right forelimb foot, metacarpophalangeal (ie, fetlock), carpal, and elbow joints was determined by use of kinematic analysis before and after palmar digital nerve blocks. We obtained 8 recordings from horses without lameness, 8 with right forelimb lameness, and 8 with left forelimb lameness. Vertical and horizontal position of the head and vertical position of the foot, fetlock, carpal, and elbow joints were processed by continuous wavelet transformation. Feature vectors were created from the transformed signals and a neural network trained with data from 6 horses, which was then tested on the remaining 2 horses for each category until each horse was used twice for training and testing. Correct classification percentage (CCP) was calculated for each combination of gait signals tested. RESULTS Wavelet-transformed vertical position of the head and right forelimb foot had greater CCP (85%) than untransformed data (21%). Adding data from the fetlock, carpal, or elbow joints did not improve CCP over that for the head and foot alone. CONCLUSIONS AND CLINICAL RELEVANCE Wavelet transformation of gait data extracts information that is important for the detection and differentiation of forelimb lameness of horses. All of the necessary information to detect lameness and differentiate the side of lameness can be obtained by observation of vertical head movement in concert with movement of the foot of 1 forelimb.
منابع مشابه
Evaluation of Palmar Digital Nerve Block and Distal Interphalangeal Joint Analgesia in Lame Horses Associated with Hoof Pain due to Sidebone Fracture
Objective- To determine if the pain of the third phalanx due to sidebone fracture in horses can be attenuated by analgesia of the distal interphlangeal joint and palmar digital nerve block. Design- Clinical study. Animals- Seven horses with unilateral forelimb lameness associated with hoof pain due to sidebone fracture. Procedures- Seven mix breed show jumping horses were selected from hor...
متن کاملApplication of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error
Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...
متن کاملImproving the performance of neural network in differentiation of breast tumors using wavelet transformation on dynamic MRI
ABSTRACT Background: A computer aided diagnosis system was established using the wavelet transform and neural network to differentiate malignant from benign in a group of patients with histo-pathologically proved breast lesions based on the data derived independently from time-intensity profile. Materials and Methods: The performance of the artificial neural network (ANN) was evaluated u...
متن کاملRemoval of Methylene Blue, Malachite Green and Rhodamine B in a Ternary System by Pistachio Hull; Application of Wavelet Neural Network Modeling and Doehlert Design
Most of previous papers in the field of dye removal used one dye or dyes with nearly separate spectra that simplifies dyes concentration determination by Beer's law at different λmax. In many real situations, dyes with highly overlapped spectra exist and their concentrations can be determined by multivariate analysis methods. In this study, principal component-wavelet neural network (PC-WNN) wa...
متن کاملAccurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network
Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of veterinary research
دوره 64 11 شماره
صفحات -
تاریخ انتشار 2003